Homework 2 of Topology II

Due Date: Feb.7, 2018

- 1. Show that the boundary of any *n*-manifold is a (n-1)-manifold. (Construct the smooth structure for the boundary.)
- 2. Let Δ be the diagonal in $X \times X$. Show that the orthogonal complement to $T_{(x,x)}\Delta$ in $T_{(x,x)}(X \times X)$ is the collection of vectors $\{(v, -v) : v \in T_xX\}$.
- 3. (a) Show that the function $f : \mathbb{R} \to \mathbb{R}$ via

$$f(x) = \begin{cases} exp(-\frac{1}{x^2}) & \text{if } x \ge 0\\ 0 & \text{if } n \le 0 \end{cases}$$

is smooth.

(b) There exists a smooth function $f : \mathbb{R} \to \mathbb{R}$ such that h is identically zero on $(-\infty, 1]$; h is identically one on $[2, \infty)$; and 0 < h(x) < 1 on (1, 2).

(c) Show that there exists a smooth function $H: \mathbb{R}^n \to \mathbb{R}$ with supp(H)is contained in closed ball of 0 with radius 2 and identically 1 in the unit disk.

(d) Let M be a smooth manifold and $\{U_{\alpha}\}$ an open cover of M. Show that there exists a smooth partition of unity $\{f_{\alpha}\}$ subordinate to $\{U_{\alpha}\}$.

Definition: Partition of Unity on M subordinate to the open cover $\{U_{\alpha}\}$ is a collection of smooth functions $\{f_{\alpha}\}$ satisfying

- (1) $0 \leq f_{\alpha}(x) \leq 1$ for all α and $x \in M$.
- (2) $supp(f_{\alpha}) \subseteq U_{\alpha}$.
- (3) For any $x \in M$, $f_{\alpha}(x) = 0$ except for finite many α .
- (4) $\sum_{\alpha} f_{\alpha}(x) = 1$ for all $x \in M$.
- 4. Construct a smooth nonzero vector field on S^{2n-1} where n is any positive integer.
- 5. Use Brouwer's Fixed Point Theorem to show that every nonzero $n \times n$ matrix with non-negative real entries has a positive eigenvalue.
- 6. Show that the Brouwer Fixed Point Theorem fails for the open ball $B_n = \{(x_1, x_2, \cdots, x_{n+1}) \in \mathbb{R}^{n+1} : x_1^2 + x_2^2 + \cdots + x_{n+1}^2 < 1\}$. (Hint: Prove any open balls are diffeomorphic to the Euclidean space, and there are many maps on Euclidean space which have no fixed point.)